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75035
Ilmenite Basalt

1235 grams

Figure 1:  Basalt outcrop on rim of Camelot Crater, Taurus-Littrow.  AS17-145-22159.

05  23  42+  Arrive station 5
CDR Talk about a block field!
LMP I think my guess of 30 percent was reasonably good
before.
LMP This looks just like our old friend, the pyroxene
gabbro with the shiney ilmenite platelets in the vugs and
partially recrystallized vesicles.  The texture variations are

planer, and they’re primarily – subplaner in the
concentrations of vesicles.
LMP Boy this is certainly a subfloor, as we mapped it.
It’s cerainly a uniform rock type. I’ll tell you.  The only
variation – is those grey zones which just seem to be either
finer or the absence of vesicles.
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Figure 2:  Closeup of vesicular basalt outcrop at Camelot Crater - location of 75015, 75035, 75055
and 75075.  NASA S17-133-20333.

LMP Here I am in the middle of a boulder field.  The
texture appears to be subophitic to – sort of like a diabase,
although a little coarser.  But it’s unquestionably organized
with that variation in vesicle concentration.  I have the
impression that these blocks are buried up here. That the
mantle does exist, even on Camelot.  There are a few blocks
that look like they’re lying more or less on the surface, you
can attribute those to craters that have disrupted the block
field.  The big ones seem to be projecting out of the mantle.
CC Do you see any such mantle - - on top of them.
LMP No, I don’t.  What’s there seems to be what could
have been knocked up there.  But I don’t have the impression
of draping, so much as I have just burial.  And I have a feeling
that the zap-pitting process just has cleaned these boulders
off – of anything that may have been on top of them, in excess
of what’s around them, right now.

- -     -
LMP  That looks like our old friend, the gabbro, all right.
75015 is Gene’s fairly freshly fractured rock.
CDR Here’s another right here.  75035 is another of the
same variety.  Wish we’d started on that structured rock
because we’re going to run out of time.  Let’s go over there
and get a least one off of it.
CDR What did you have picked out?
LMP This in here with the layering in it.
LMP  How about this chunk down there, Gene?
CDR I don’t think that’ll come off very easy.
CDR By golly, your geology training did come in handy.
You learned where to hit rocks (75055).
CDR These rocks here have a much greater density of
the white mineral in them, or crystals, that I’ve ever seen
before, Jack. Where did we see these kind before?
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Figure 3:  Photo of top, pitted side of 75035 showing micrometeorite pits.  NASA S73-16257.  Sample is 16 cm long.

LMP Well, when I looked at it first, that’s what I thought
– but I think that the zap pits are making the white stand out
more.  They’re fooling you a little bit.  Because with what I
looked at it with the hand lense, it looked like a fairly normal

gabbro – like some of these that have crystallized with the
mare basalt.
CDR Wher are you?
LMP I’m back over here. What I want is sample of this
soil off one of these rocks.  But it looks to me like it’s soil
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that’s been thrown up there rather than – this rock is about 3
meters in diameter but it only stands about – at the most –
one-third of a meter high.  But we can get up about a meter
from the soil/rock interface and get some soil off the rock, I
think (75060-5).  It’s about a centimeter deep and a half
meter in.
CDR Let’s take that chip there that’s lying on top with
the next scoop.  That’s the soil from the top of the rock.  And
we’re taking piece of the rock itself, which looks pretty much

like the other one.  It might be a little bit more vesicular
(75075).
LMP Let me get over here and try to get one bag of soil
that’s away from the boulder.
CC We’d just like to get the kilogram of soil somewhere
in between the boulders – as open as you can.
LMP Let’s do it right here.
CDR This will be a matched pair with our soil sample
too.
CDR  I’m sampling down to about 5 centimeters (75080-
5).

Figure 4:  Location and orientation of 75035 at rim of Camelot Crater, Apollo 17.  NASA AS17-145-22138

75035
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Figure 6:  Pyroxene composition of 75035 (from
Longhi et al. 1974).

Figure 5:  Texture of 75035 showing plagioclase laths
enclosed in pyroxene with ilmenite needles (taken from
Neal and Taylor 1993).  Scale 2.5 mm.

Mineralogical Mode of 75035
Longhi et. Brown et Meyer and
al. 1974 al. 1975 Boctor 1974

Olivine
Pyroxene 44 45.4 45
Plagioclase 33 32.7 31
Ilmenite 15 13.8 17
Silica 5 6.2 5
Pyroxferroite 2
Mesostasis 1 1.9 2

Figure 7:  Ni and Co content of native iron in
75035 compared with Apollo 11 (this is figure 2 in
Meyer and Boctor 1974).

ntroduction
Lunar sample 75035 was collected from a small boulder
on the rim of Camelot Crater (figure 4) and is presumed
to represent a portion of a lava flow, deep beneath the
regolith (Wolfe et al. 1981).  This sample, along with
75015 and 75055 from the same location, is slightly
more aluminous and less titanium rich, than other
Apollo 17 basalts (Rhodes et al. 1976), and is
surprisingly similar to some of the Apollo 11 basalts.
It has the highest sulfur content (0.3 %) of any lunar
sample.

The flat side of 75035 is pitted with micrometeorite
craters and also shows about 2-3 % vugs or vesicles
(figure ).  Zap pit are also found on the S, E and W
sides.  Surface photography allowed accurate
orientation.

75035 has been dated at 3.76 b.y. with an ~80 m.y.
exposure to cosmic rays.

Petrography
Longhi et al. (1974) found that 75035 was texturally
and chemically like some of the Apollo 11 basalts (see
also 75055).  It is a medium-grained subophitic high-
Ti basalt texturally similar to the Apollo 11 ophitic
basalts (figure 2).  Suhedral laths of plagioclase are
surrounded by clumps of anhedral pyroxene.  Large
laths of ilmenite penetrate the plagioclase and
pyroxene, providing evidence that ilmenite was the first
phase to crystallize from the melt.
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Figure 8:  Composition of 75035 compared with
other lunar basalts.
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Figure 9:  Normalized rare-earth-element diagram
comparing 75035 with that of a typical Apollo 11
basalt (both determined by isotope dilution mass
spectrometry Wiesmann et al 1975 and Philpotts et
al. 1974).
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Figure 10:  Composition of Apollo 17 basalts
with 75035.

Meyer and Boctor (1974) studied the minor phase in
75035 and Roedder and Weiblen (1975) studied melt
inclusions in ilmenite from 75035.  Metallic iron
appears to have crystallized from the melt as a minor
phase throughout the crystallization sequence.

Shih et al. (1975) and Rhodes et al. (1976) discuss the
origin and differentiation of Apollo 17 basalts.  75035
appears to be the result of low pressure mineral
separation and elemental fractionation of a more mafic
parental magma.

Mineralogy
Pyroxene:  Pyroxene crystals in 75035 are highly
zoned.  The composition of early formed pyroxene
(Wo40En43Fs15) varies continuously to pyroxferroite
(figure 6).  Some pyroxene crystals are sector-zoned.
Jagodzinski et al. (1975) reported pigeonite exsolution
from the augite cores.

Plagioclase:  Plagioclase (An88-72) grains up to 1.5 mm
show iron enrichment during crystallization (Longhi
et al. 1974).

Ilmenite:  Ilmenite laths as big as plagioclase are
abundant in 75035 (Meyer and Boctor 1974).

Cristoballite:  75035 has about 5% silica as a residual
phase in the intersticies.

Metallic Iron:  Meyer and Boctor (1974) found that
metallic iron was associated with several accessory
phases, and reported Ni and Co contents (figure 7).
Iron grains were often associated with ulvospinel.

Taylor and Williams (1974) reported ~1 % Co, but no
Ni in iron grains.

Troilite:  Meyer and Boctor (1974) determined the Ti
content of troilite (but this is likely secondary
flourescence)!

Tranquillityite:  Careful analysis reported in Meyer
and Boctor (1974) (Table 2).

Baddeleyite:  Careful analysis reported in Meyer and
Boctor (1974).

Zirconolite:   Careful analysis reported in Meyer and
Boctor (1974).

Chemistry
Papike et al. (1976) termed 75035 and 75055 as low-K
Apollo 17 basalts.  Note that these samples also have
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Figure 11:  Rb/Sr mineral isochron for 75035 (from
Murthy and Coscio 1976).

Figure 13:  Pb/Pb age for 75035 (from Nunes
et al. 1974).

Figure 12:  Argon release plateau for 75035
(from Turner and Cadogen 1974).

Summary of Age Data for 75035
Pb/Pb Rb/Sr Ar/Ar

Nunes et al. 1974 3.56 ± 0.4 b.y.
Murthy and Coscio 1976 3.81 ± 0.14
Turner and Cadogen 1974 3.76 ± 0.05
Caution: Be cautious of old decay constants.

lower Ti content and are nearly identical in composition
to Apollo 11 basalts (figures 8 and 9).  Analyses include
those by Laul et al. (1974), Wanke et al. (1975),
Brunfeldt et al. (1974), Rose et al. (1975) and Duncan
et al. (1976)(table 1).  Paces et al. (1991) classify 75035
as a type A, Apollo 17 basalt (figure 10).

Moore et al. (1974), Petrowski et al. (1974), Gibson
and Moore (1974), Gibson et al. (1975), Moore (1975),
Moore and Lewis (1976), Des Marias (1978) and
Gibson et al. (1976) reported carbon, sulfur and
nitrogen abundances.  The sulfur content of 75035
(2770 ppm) is the highest recorded for any lunar sample
(Gibson et al. 1976).  Merlivat et al. (1974) determined
the water content and isotopic ratio of hydrogen.

Radiogenic age dating
Murthy and Coscio (1976), Nunes et al. (1974), Turner
et al. (1973) and Turner and Cadogen (1974) have each
dated 75035 (figure 11-13).  With an age of about 3.8
b.y., it is apparently one of the oldest mare basalts –
nearly as old as the Serenitatis Basin.

Tera and Wasserburg (1974) discuss the U/Pb age of
75035 and 75055 – giving an intercept age age of 4.42
b.y. (age of source region ?).

Cosmogenic isotopes and exposure ages
Turner and Cadogen (1974) reported a cosmic ray
exposure age of 80 m.y. determined by 38Ar.  Crozaz et
al. (1974) and Arvidson et al. (1976) reported a cosmic
ray exposure age of 75035 of 72 ± 2 m.y. by the 81Kr
method.  Marti et al. (quoted by Bhandari et al. 1977)
determined 89 ± 3 m.y. by 81Kr.  This gives the apparent
age of Camelot Crater.
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Table 1.  Chemical composition of 75035.

reference Laul 74 Brunfelt74  Rose75 Wanke75 Duncan76 Murthy76 Philpotts74 Garg78 Morgan74
weight 286 mg
SiO2 % 42.61 (c ) 42.31 (d)
TiO2 9 9.2 (a) 9.59 (c ) 9.98 (a) 8.95 (d)
Al2O3 9.9 9.7 (a) 10.05 (c ) 9.24 10.3 (d)
FeO 18.8 18.4 (a) 18.08 (c ) 19.22 18.57 (d) 17.62 (a)
MnO 0.236 0.25 (a) 0.27 (c ) 0.269 0.262 (d)
MgO 7 6.8 (a) 6.25 (c ) 6.13 6.28 (d)
CaO 11.3 10.6 (a) 12.53 (c ) 11.69 12.15 (d)
Na2O 0.42 0.404 (a) 0.39 (c ) 0.46 0.53 (d)
K2O 0.074 0.069 (a) 0.08 (c ) 0.084 0.061 (d) 0.073 (b) 0.066 (b)
P2O5 0.06 (c ) 0.09 0.084 (d)
S % 0.14 0.219 (d)
sum

Sc ppm 76 82 (a) 74 (c ) 83.6 79.3 (a)
V 30 30 (a) 16 (c )
Cr 1512 1070 (a) 1780 (c ) 1608 (c ) 1416 (d) 1380 (a)
Co 16 13.7 (a) 18 (c ) 14.5 (c ) 19 (d) 16.6 (a)
Ni <10 (a) 11 (c ) (c ) 13 (d) 1 (c )
Cu 3.8 (a) 32 (c ) 3.34 (c )
Zn 2 (a) 4.6 (c ) 2.1 (c ) 2.3 (c )
Ga 4.5 (a) 6.2 (c ) 3.95 (c )
Ge ppb <20 (c ) 1.27 (c )
As 1 (c )
Se <0.08 (c ) 156 (c )
Rb 0.6 (a) 0.81 (c ) 1.5 (d) 0.655 (b) 0.679 (b) 0.79 (c )
Sr 195 (a) 186 (c ) 209 (c ) 223 (d) 189.5 (b) 192 (b)
Y 104 (c ) 105 (c ) 118 (d)
Zr 255 (c ) 300 (c ) 319 (d) 437 336 (a)
Nb 24 (c ) 29 (d)
Mo
Ru
Rh
Pd ppb
Ag ppb 0.62 (c )
Cd ppb 1.1 (c )
In ppb
Sn ppb
Sb ppb 0.04 (c )
Te ppb 1.5 (c )
Cs ppm 0.04 (a) 0.026 0.029 (c )
Ba 95 81 (a) 224 (c ) 102 126 (d) 86.5 (b) 92.9 (b)
La 7.3 7.6 (a) 9.07
Ce 27 20.4 (a) 35 23.6 (b)
Pr 6.5
Nd 30 (a) 36.5 27.3 (b)
Sm 10.8 12.9 (a) 13.6 11.2 (b)
Eu 2.2 2.25 (a) 2.6 2.52 (b) 2.02 (a)
Gd 19.8 17.1 (b)
Tb 3.1 2.81 (a) 3.8 1.5 (a)
Dy 20 22.9 (a) 24 19.7 (b)
Ho 4.8
Er 15 11.1 (b)
Tm
Yb 10 10.7 (a) 10 (c ) 13.2 11.4 (b)
Lu 1.5 1.82 (a) 1.88 1.7 (b)
Hf 8.7 10 (a) 11.2 13.6 11.4 (a)
Ta 1.6 1.81 (a) 2.01
W ppb 0.12 (a) 0.085
Re ppb <0.2 (c ) 0.001 (c )
Os ppb
Ir ppb 0.001 (c )
Pt ppb
Au ppb 0.033 (c ) 0.008 (c )
Th ppm 0.3 0.35 (a)
U ppm 0.113 (a) 0.149 0.153 (c )
technique:  (a) INAA, (b) IDMS, (c ) mixed, (d) XRF, (c ) RNAA
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Table 2 U ppm Th ppm K ppm Rb ppm Sr ppm Nd ppm Sm ppm technique
Murthy and Coscio 1976 604 0.655 189.3 idms
Yokoyama et al. 1974 (top) 0.22 0.65 counting
Nunes et al. 1974 0.151 0.4879 idms
Brunfelt et al. 1974 0.113 0.35 0.6 195 inaa
Philpotts et al. 1974 0.679 192 27.3 11.2 idms
Wanke et al. 19754 0.149 36.5 13.6 inaa

Table 3:  Analysis of tranquillityite.
SiO2 13.9 14.7 13.3
Al2O3 1.02 1.22 0.89
TiO2 21.2 20.5 20.7
FeO 42.4 40.9 41.1
MnO 0.09 0.35 0.04
MgO 0.35 0.02 0.17
CaO 1.06 0.94 0.82
ZrO2 16.2 18.5 17
Y2O3 3.01 2.69 3.56
HfO2 0.25 0.25 0.17
Nb2O5 0.68 0.82 0.59
total 100.16 100.89 98.34
(from Meyer and Boctor 1974)
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Crozaz et al. (1974) and Bhandari et al. (1977) reported
a track ages of 7.3 m.y. and 5.4 m.y.  respectively.  These
are understood to be low because of the constant
erosion of the rock surface by micrometeorite
bombardment.  Based on their study of the incidence
angle of fossil cosmic ray tracks in plagioclase,
Kratschmer and Genter (1976), determined that 75035
probably had a “complex burial history”.

Yokoyama et al. (1974) determined that the surface of
75035 was “saturated” in 26Al = 107 dpm/kg. (22Na =
170 dpm/kg.)

Other Studies
The results obtained on 75035 are reviewed in the
catalog by Neal and Taylor (1993).

Crozaz et al. (1974) determined the isotopic ratios of
Xe and Kr.

Lugmair and Marti (1978) presented Sm and Nd isotope
data in a diagram.

Turner and Cadogen (1974) used 75035 to evaluate
the role of Ar recoil effects that might effect age dating
plagioclase.  Schaeffer et al. (1977) used 75035 to try
to understand how a laser probe might be used to date
an igneous rock of known age (they obtained a range

of ages).  Schaeffer et al. showed that Ar recoil effects
are often confused with diffusion loss of Ar from high
K phases.  Note:  Horn et al. (1975) used 75075 to
investigate the effects of recoil on Ar/Ar ages.

Pearce et al. (1974), Brecher (1977) and Sigiura et al.
(1979) determined the magnetic properties of 75035.

Longhi et al. (1974) and O’Hara and Humphries (1975)
determined the low pressure phase diagram for Apollo
17 basalts, including 75035.  Taylor and Williams
(1974) and Usselman et al. (1975) determined the
cooling rate of the sample.  McCallum and Charette
(1977, 1978) determined the crystal/liquid distriburtion
coefficients of Zr and Nb for ilmenite, armalcolite and
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Figure 14:  Group photo of end pieces and sawn slab of 75035.  NASA S73-31796.  Small cube is 1 cm.

Figure 15:  Geneology of slab cut from 75035.  ,19 is 1 cm x 0.9 cm.  NASA S71-73-31797.
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clinopyroxene.  Longhi et al. (1978) experimentally
studied the Fe/Mg partitioning between olivine and
melt using 75035 (although the rock itself has no
olivine).

Schaal and Horz (1977), Schaal et al. (1979) and
Harrison and Horz (1981) reported studies of shock
metamorphism of a basalt using samples of 75035 as
starting material.
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Figure 16:  Closeup photo of some surface pieces derived from 75035,31.  S76-20728.  Scale is cm.

Petrowski et al. (1974) and Gibson et al. (1975)
determined the isotopic composition of carbon and
sulfur in 75035.

Processing
In 1973, 75035 was sawn to create a slab (figures 14
and 15).  However, the orientation of the columns cut
from this slab do not appear to be normal to the lunar
surface orientation (beware!).

75035 is used for public display, including a small piece
for the Astronaut Ambassador Program.
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